
NOTATION 

am, thermal diffusivity; A, silicon absorptivity; k, a m, and X, absorption, heat exchange, and thermal conductivity 

coefficients; 5, thickness of the silicon film; qf, heat flux density; t*, duration of the light pulse; W, pulse energy; | = 

T(x, 0 /T 0, dimensionless temperature; ~ = x/6, dimensionless coordinate; h and r, space and time steps; Bi = C~mS/X, Biot 

number; Ki = AqdS/k T o, Kirpichev number; Bu = k~, Bouger number; and Fo = amt/62 , Fourier number. 
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NUMERICAL METHOD FOR SOLVING THE COUPLED 

PROBLEM OF RADIATIVE-  CONVECTIVE AND 

CONDUCTIVE HEAT TRANSFER 

Yu. K. Malikov, V. G. Lisienko, and V. V. Volkov UDC 669.046:536.24.001.57 

The solution of the problem of complex heat transfer is reduced to a systematic solution of a system of non- 
linear equations and the heat-conduction equations. A rapid iterative method is proposed for solving the 
system of equations. 

The problem of heating and cooling of a system of bodies with a complex shape under conditions of radiat ion- 
convection heat transfer has not been adequately studied. The case when the bodies are heated in a regular regime was 
examined in [ 1 ]. For nonstationary processes, this assumption is not satisfied. 

We shall examine a radiating volume V, surrounded by a system of opaque bodies. The surface F of the volume V 
consists of the surfaces of the bodies and of "liquid" boundaries, through which the heat carrier enters and leaves the 
volume. We shall view the latter as fictitious surfaces, allowing gas to pass freely through them. These surfaces are assigned 
a certain temperature (or flux density of the resulting radiation), as well as an effective emissivity. This artificial technique 
is used quite frequently [2] to close the emitting system in examining radiative transfer and permits the gas flow to leave 
the system at the same time. 

We shall divide the volume V and the bounding surface F into N zones. For each zone n, we shall write the law 
of conservation of energy in the form 

~ad,~ =--QT~, n =  l,  2 . . . .  , N. (1) 

The radiant energy transport is approximated using the resolvent method by a system of algebraic equations 
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N 

(~aa,n = ~ z 4A,~jm, n = i ,  2 . . . . .  N, (2) 
m = l  

where Amn are the selective radiative transfer coefficients introduced in [3 ]; T m is the temperature of zone m. Without 

the details of the methods used for determining the coefficients A~mn , we note that considering they depend primarily o n  

the geometry of the radiating system and to a lesser extent on the temperature field and the directional distribution of the 
intensities. This permits limiting the analysis to periodic refinement of the coefficients A~n.. without iteration, in radiation 

solving the nonstationary problem. 

In accordance with the simplified zonal method, we shall assume that within each volume zone, the gas is adequately 
mixed and is essentially isothermal. The total flux of  enthalpy contained in the gas flowing into the volume zone n equals 

Q; = E Wq,~,~ (C,,T)q,, ( 3 )  
q' 

while the flux of  enthalpy contained in the gas flowing out of  the volume zone n is 

Q~- = lr/~ (CpT),,, (4) 

where Cp is the average heat capacity of the gas in the temperature range 0-T~ 

The flow of heat into the volume zone n due to heat transfer by convection Q~ and turbulent heat conduction Qtr 

is proportional to the difference of the temperatures of  zone n and neighboring zones: 

/ rL ' 

QY= 
q" 

It is evident from (3)-(6) that the resulting flow 
in the form 

Q~- - -  Q f  -~- Q~n @ QY = '%'~ gmnTrn,  
tT~ = 1 

~,,,,Fm. (T.2. - -  T,0, (5)  

K,q,F~q, (Tq, - -  T'~). (6) 

of  heat into the volume zone n due to convection can be written 

N 

(7)  

where gmn are the coefficients of convective heat transfer, which differ from zero only for neighboring zones m and n and 

depend in general on the temperatures of the zones. From here, in the absence of molecular heat conduction in the gas, 
we obtain for each volume zone n 

N 

Q,, = - (pCp)~Y~ _OT,~ ~- ~ gm,~Tm + Oin,n, (8) 
0"r ' 

where pep  is the volume heat capacity of the medium; V n is the volume of zone n; and Qin, n is the internal liberation of 

heat in the zone (for example, due to combustion). 

We shall now examine the surface zone m. In addition to radiation, heat enters it due to heat transfer and heat 
conduction and, in addition, at the solid b o d y - g a s  boundary the following coupling conditions must be satisfied: 

T.~( '0 Oh(x, y, z, W)lF~, 

Q~ (T) = ~F , ,~  (Tq, (~) - -  Tm (~)) - -  / n Z,, 00 ,~  d F ~ ,  
' ' # m  d;z 

(9)  

where Tq, is the temperature of  the volume zone q', adjacent to the surface zone m; Ok(X, y, z, r) is the temperature field 

in the k-th body, on whose surface zone m is situated. The functions Ok(X, y, z, r) are determined from a solution of  the 

heat-conduction equations 

0Ch 00~ ,  _ V ( ~ h V O h )  = 0 
0r 

(10) 
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with the coupling conditions (9) on the surfaces, referred to the volume, and boundary conditions of the first, second, 
third, and fourth kind on the remaining surfaces of the k-th body. 

Let us proceed to construct the finite-difference analog of  the system of equations (1), (2), and (8)-(10). We intro- 

duce a time step Ar ,  such that  r i = Ari. We indicate by the integer indices i the values of quantities at times r i and by 

the fractional indices i + 1/2 the values of functions determined on the segment [~, ri+ 1 ]. 

We shall approximate the heat flux of each zone n, Qn' and Qrad in the temperature interval [ r  i, 7i+ 1 ] by a step 

functions in terms of the values of the temperatures of zones on the boundaries of the interval. We shall call the zone n, 
for which such an approximation is satisfied explicitly in terms of the known values of its temperature at the time r i, the 

C zone. In the opposite case, we shall call the n zone the P zone, if in approximating the heat fluxes in implicit  form, 
the unknown value of  its temperature at time ri+ ~ is used. The explicit approximation leads to a simpler computational  

scheme, but  in this case the time step Ar  must be small enough to neglect the changes in temperature in the C zones in 
the time interval examined. Fo r  this reason, it is useful to choose for the C zones heat-absorbing surfaces, whose tempera- 
ture depends comparatively little on time. On the contrary, from considerations of stability, we must always view the gas 
zones as P zones. We note that the fictitious surfaces introduced above, through which gas enters the volume and leaves it, 
can be viewed either as P zones with a predetermined quanti ty Qn(r) or as C zones with a fixed temperature Tn(r), 
depending on the circumstances. 

For  definiteness, in what follows, we shall assume that  all surface zones are C zones and have the numbers n = 

1, 2, ..., M, while the gas zones have the numbers M + 1, ..., N. In accordance with this, we obtain for the interval [z i, 

ri+ 1 ] instead of relations (1), (2), and (8): 

"g ~ 4 z ~v~(l) ' /~ o N, (11) .......... =__Q, ;~ I , _  r z = l ,  ~, . & ~  ~ , . . . ,  

l l z :  I 

Q~+"/~-  ,op  , ,~ r~, - ~ ~ -  r~ ': , r , i~l  
-i- ~ g~,,~T~;, T Qin,,~ u=31-~-1, N. (12) 

l~z = :  I 

HereT/m = T  i w i t h m ~ < M a n d T / = T  i+1 w i t h m > M .  m - m  

Let us write the system of heat-conduction equations (10) in the interval examined: 

O ( ~  + I / ~  ~ ~+~/2 
- -  V (l~kVG~ ) = O, pC~ 8"~ 

(13) 

where k is the number of the body. We shall determine the boundary conditions for (13) on surfaces, referred to the 
volume V, by approximating the coupling conditions (9): 

00~'-1/2 G~ (14) 
?'" & = c~,,,(T~, ~1 r ~ n~+~S2/- 

yil-~rl = 0~4-1/2 ('~+1)]Fm, 71l.= I, 2 . . . . .  M . .  (15) 

Here, i t  is assumed that  the dimensions of the zone F m are so small that the quanti ty O0k/Sn remains practically constant 

within zone m. On the remaining surfaces of the bodies, the boundary conditions are determined in the usual manner. We 
shall give the initial conditions for the equations of heat conduction (13) in the form 

,_,~-~-~ ,,,~ 
,.~ (x, j ,  z, ~ ) =  O~ -~/2 (x, y, z, "r~). 

Let us formulate the scheme for solving the system of equations (11)-(13) with the boundary conditions (14), (15) 
and the initial conditions: 

T~ ~ To .... m =  1, 2 . . . . .  N; ~)~l~'~(x, j ,  z, 0)--- e0.k(x, Lj, z), 

where k enumerates the bodies. 

l~ Knowing the temperature field at time r = 0, we determine the coefficient of  radiative transfer A~mn . 

2. We solve the system of  N - M  nonlinear equations (11) and (12) for the temperature of the P zones 
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M N--Af 
d Z  T4(0)  , A 2  T 4 ( I )  

. . . . . . .  (16) 
m : l  m=M+l 

where n = M + 1, ..., N, while the quanti ty Q(,/2) is defined in (12). As a result, we find T (1) for n = M + 1, ..., N. 
11 

3. We determine the quanti ty QOnn), n = 1, 2 . . . . .  M, for the C zone from (11). 

4. Since after this the boundary conditions (14) in the interval [0, krl are determined, we solve the system of 
equations of  heat conduction (13). 

5. We determine the temperatures of  the C zones T O) n : 1, 2 . . . .  , M, at the times A r  from the conditions (15). 

6. If  necessary we refine the coefficients of  radiative transfer 2] Amn and repeat operations 2-5 at subsequent times. 

Thus, at each time step At, it  is necessary to solve a system of nonlinear equations (16). The gradient methods 

usually used for this purpose require %(M-N)  a operations for each iteration. Since this system must be solved repeatedly, 

already for a comparatively small number of P zones (%30) the amount of computat ion turns out  to be too large for 
modern computers. 

Let us write the system of nonlinear equations (16) for the step i in vector form 

[IAI] ~4u+i > = >( o __~.(i+ i/2) (17) 

Here II A 11 -= [AEmn ] is the matrix of  radiative transfer coefficients for the C zones with dimensions ( M -  N) x (M--N);  
--+ 

,~4(~+~) = [T4ff+~)], ~ = [Q~+~/-'], n = M + 1 . . . . .  N, while the components of  the vector p(i) equal: 

M 
p(i) ~ ~z T4(i) (18) ,, = - -  ~ ...... - ~  , n = M - ? l ,  . . . ,  N. 

m = l  

The system of equations (17) can be solved using the following rapidly converging iterative method: 

,~4(]@1) = l lA i l - tp ( , ) -  ]!All-~Q~( ) 
(19) 

...-> 

The components of the vector Q,0) are determined from the relations: 

N 

= Qin,,~, A~ 

Qs = .~,~r)<z-~/21, n =  M + 1, . . . ,  N,  

(20) 

�9 i for m < M, while the and in addition the temperatures of the C zones do not vary during the iteration process, T] m = T m 

temperatures of the P zones are determined from the relations 

T(ll = T~O ' T j + t l  = (T4(i+1))1/4, m > M .  (21) 

Here the indices j indicate the values of  the quantities after the j-th iteration, while the indices i, i + 1/2 correspond to the 

v~ues of  quantities at times z i and in the interval [ r  i, "q+l ]" 

If the i teration process (19) converges, then for j--~ oo T j ) - +  TI[ +~1 for n > M, while (20) goes over into (12). 

When the matrix II A I1 is independent of  temperature and is easily invertible, this i teration process requires (N - M) 2 
operations at each step. 

The convergence of the iterative method (19) with a successful choice of/3 can be proved rigorously, i f  the matrix 

o f  raidative transfer coefficients [I A 11 and the matrix of  coefficients of  convective transfer of  heat between zones [gmn ] 

are positive definite, the first conditions occurs in examining radiative heat transfer in the gray-body approximation with 
isotropic scattering, while the second occurs if  the convective heat transfer in the system occurs due to heat emission and 
turbulent heat conduction. 
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Fig. 1. Simulation of  the thermal operation of a ring-shaped furnace: 
a) geometrical model of  the furnace; b) temperature of the metal sur- 
face (zone 1) in the process of  heating the furnace (curves 1, 2, 3 
correspond to 5, 10, and 20 h after the heating begins; 4, 5 are the 
temperatures of  the metal surface and crown of the furnace in the 
stationary state); the points indicate the experimental values of the 
temperatures of  the metal surface (zone 1); c) separation of  the metal 
surface into zones; d) sketch showing the heat fluxes on the surfaces of  
the cylindrical parts (kW/m 2). T, ~ z, m. 

In practice, it turns out that iterations of  the form (19) always converge quite rapidly, if the transfer of  heat due to 
radiation predominates in the heat balance of  P zones. In this case, it is possible to use values of  fl in the range 0.5-0.8. 
As the convective-conductive component increases in the heat balance of P zones, in order for the iteration process to 
converge, it is necessary to decrease the quantity fi, and in this case, the convergence gradually becomes worse and the use 
of ~ < 0.1 is not  expedient. 

We note that the convergence of the iteration method (19) is nearly independent of the initial approximation, but 
vdth an unfortunate choice of  the initial values, it can happen that dui-ing the iteration T4n 0) < 0. For this reason, it is 
more convenient to replace (21) in practice by the following expression: 

~ Z n  I l a - - i n  / I n  ) for  z a  ~ n  , 
T ~ @ I  (,r,(f)r .~4 (]q- 1 ),.-r,4 (]) , ,1/4 ...r,4 (]@ l ) T 4 ( / )  

| t T 4 ( / + l )  ~1 /4  ~ ~ 4 ( / + 1 ) ~ , - r , 4 ( 1 )  ' l ,  iV. [ I  n ) for  I n  ~ l n  , 12-~ :~V~-7" . . . .  

(22) 

Relations (22) are empirical and ensure convergence of  iterations for any starting approximation; in addition, if 
TJ+ln -+ Tin' then (22) goes over into (21). 

The algorithm proposed was used to construct the dynamic model of heating of cylindrical parts in a ring-shaped 
furnace. The geometrical model of a flame ring-shaped furnace (Fig. 1 a) represents an involute in the form of a parallele- 
piped, separated in length into five technological regulation zones. Two volume gas zones and seven surface zones were 
introduced into each technological zone. Zones 1-4 are situated on a metal surface (Fig. lc), while zones 5, 6, and 7 
correspond to the bottom, walls, and crown of  the furnace. 
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0 /~ ~ Number  of iterations 

Fig. 2. Convergence of the iterative process when 
the burners are turned on in a cold furnace: 1, 2, 
3) temperature zones a, b, c (Fig. la) during the 
iteration process. T, ~ 

In order to determine the selective coefficients of  radiative transfer, we used a nine-band model of the radiation 
spectrum [4]. The crown on the furnace and its walls were modeled by plates consisting of  five elements in accordance 
with the number of technological zones. For each element we constructed a grid consisting of  eight nodes, necessary 
for solving the one-dimensional nonlinear heat-conduction equation. It was assumed that within the technological zone, 
the parts are heated under identical conditions, so that it is sufficient to determine the temperature field only in a single 
part and in the adjacent part of the bottom (Fig. lc). In order to solve the corresponding two-dimensional heat-conduction 
problem, we constructed a difference grid containing 130 nodes. Thus, the total number of  nodes in the difference grid 
was 740. 

The scheme of the gas motion in the furnace, the distribution of the fuel flow over the zones, and the experimental 
measurements of the temperatures of the metal surface are taken from [5]. On the outer surface of the furnace casing, 
the temperature was assumed to be fixed and on the me ta l -bo t t om boundary, we used boundary conditions of  the fourth 
kind. The temperature of the metal at the inlet to the furnace was assumed to be fixed, while for the bottom, we defined 
cyclical conditions: the temperature fields at the outlet from the furnace and at the inlet into the furnace are identical. 

The stationary thermal regime of the furnace does not depend on the initial conditions. It is convenient to assume 
that initially the furnace is at a temperature of 0~ and is filled with metal with the same temperature, although this does 
not correspond to the furnace heating technology. In this case, the time for establishing a stationary state in the furnace 
is 50h .  

Initially, when the burners are turned on in the cold furnace, the temperature of the gas zones turns out to be much 
lower than in a real operating furnace. The convergence of the iteration process (19) under these conditions is shown in 
Fig. 2. It is evident that the lower the temperature of the zone and, therefore, the less important is the heat transfer by 
radiation in the thermal balance of the zone, the worse the convergence of the iteration process. Under real conditions, 
80% of the heat in a given type of  furnace is transferred by radiation, while already 2-3 iterations of  the form (19) permit 
solving the system of equations (17) with an error not exceeding I~ 

The curves showing the heating of the metal, presented in Fig. 1 b, correspond to a furnace productivity of  G = 54 
tons/h with a diameter of the parts equal to 0.17 m and total heat power bEQP = 32 MW. It is evident that in the 

stationary state the computed and experimentally determined temperatures of the metal surface agree well. For this regime 
of furnace operation, Fig. 1 d shows a sketch of the heat flows on the surface of the cylindrical part in the second techno- 
logical zone. 

In conclusion, we note that the calculations carried out demonstrate the quite high efficiency of the algorithm pro- 
posed: simulation of heating of parts in a ring-shaped furnace, occurring under real conditions within 1.5 h, requires 10 min 
of machine time using a ES-1033 computer. This suggests that the expenditures of machine time in using such an algorithm 
for constructing more detailed models of  heating of bodies with complex shape under conditions of  radiative-convective heat 
transfer will be acceptable. 

NOTATION 

Amn, Qrad.n and Qn' resulting heat flows into zone n due to radiation and due to other types of  heat transfer; E 

selective coefficients of radiative transfer; T n, temperature of  zone n; Ok(X, y, z, r), temperature field in the k-th body; 

Wq, ~ n and Wn, mass velocities of  the gas entering zone n from a neighboring zone q' and leaving zone n; Cp, Cp, X, p, 

average and true heat capacities, thermal conductivity, and density of the medium; Qn +, Q~, heat flows gained and lost by 

the volume zone due to motion of the gas; Q~n, Qtr ,  heat flows into zone n due to heat transfer and turbulent heat con- 

duction; am'  Knq', coefficients of heat transfer by convection and turbulent heat conduction; F m, area of the surface zone 
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m; Fnq,, area of the boundary of the volume zones n and q'; gmn' coefficients of convective heat transfer; N, total num- 

ber of zones; M, total number of C zones; At, time step; Tin' zone temperature at time r i = Ari; | temperature field 

in the interval [r i, ri+ 1 ]; TJ n, value of the zone temperatur e after the j-th iterations; II All, a (N - M) • (N - M) matrix; 

Y~, F. ~, Q* , (N - M) dimensional vectors; ~3, positive constant, ~3 < 1. 
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S OLUTION OF THE S T E A D Y - S T A T E  PROBLEM OF H E A T  

E X C H A N G E  A N D  FLOW OF L U B R I C A N T  IN R A D I A L  

S LIDING B E A R I N G S  WITH S E L F - A L I G N I N G  SEGMENTS 

V. V. Rukhlinski i ,  L. A.  Gura, and O. M. Borisenko UDC 621.165 

The article describes a method based on the use of implicit finite-difference schemes, and it presents the 
results of the numerical solution of the problem of heat and exchange and flow of lubricant in multisegment 
radial sliding bearings. 

The numerical solution of the problem of liquid flow and heat exchange in radial segmental sliding bearings is based 
on the welt-known assumptions of Reynolds' hydrodynamic theory of lubrication. The physical parameters of oil were 
taken as constant, and they were determined according to the mean oil temperature in the gap, which was found from the 
solution of the heat-transfer equation. 

The initial system of differential equations describing the intensity of heat transfer of the shaft in radial sliding 
bearings has the following form in dimensionless values: 

a (h oPt. o (h OPl=6~ (1) 
t, 0z ) o---7' 

8t ( v y Oh '~ 8t :)t 1 0at Eo [ (  Ou I e ( &e 121 - -  ' - -  - -  tt - - -  - -  + w  , (2) 
u Ox -7 It h Ox ]~-y Oz Peh e Oy z q -~eh2L\  Oy ] + \  Oy ) j 

RIL l dxez. Nu 
a ~ h ( l - - t s )  o ' -@Y u=0 (3) 

The coordinate Y is reckoned from the surface of the shaft, X from the horizontal axis, and Z from one of the end faces 
of the bearing. 

The boundary conditions for solving the problem had the following form: 
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